Москва
Каталог   /   Фототехника   /   Оптические приборы   /  Микроскопы
Микроскопы 
Популярные модели→ Сравнить в таблице
BRESSER Advance ICD 10x-160x
от 62 953 р.
стереоскопический, оптический, увеличение 10 – 160 x, плавное, верхний свет, 4.7 кг
Levenhuk Rainbow 50L Plus
от 7 310 р.
биологический, оптический, 3 объектива, увеличение 64 – 1280 x, линза Барлоу, подвижный столик, верхний свет
Levenhuk 740T
от 38 150 р.
биологический, оптический, 4 объектива, увеличение 40 – 2000 x, подвижный столик
BRESSER Biolux LCD 50x-2000x
от 25 911 р.
биологический, оптико-цифровой, 3 объектива, увеличение 50 – 2000 x, подвижный столик, камера, верхний свет, 1.4 кг
Levenhuk LabZZ M3
от 2 870 р.
биологический, оптический, 3 объектива, увеличение 300 – 1200 x, подвижный столик
Micromed 2 var. 3-20
от 39 220 р.
биологический, оптический, 4 объектива, увеличение 40 – 1000 x, освещение по Келлеру, подвижный столик, 7 кг
Levenhuk LabZZ M101
от 2 051 р.
биологический, оптический, 3 объектива, увеличение 40 – 640 x, подвижный столик
Levenhuk Rainbow 2L Plus
от 5 322 р.
биологический, оптический, 3 объектива, увеличение 64 – 640 x, подвижный столик, верхний свет
BRESSER Duolux 20x-1280x
от 15 490 р.
биологический, оптико-цифровой, 3 объектива, увеличение 20 – 1280 x, линза Барлоу, камера, верхний свет, 2.1 кг
Levenhuk LabZZ M2
от 1 550 р.
биологический, оптический, 3 объектива, увеличение 100 – 900 x
Levenhuk Rainbow 2L
от 4 410 р.
биологический, оптический, 3 объектива, увеличение 40 – 400 x, подвижный столик, верхний свет
Levenhuk DTX 50
от 6 170 р.
цифровой, увеличение 20 – 400 x, без окуляра, камера, верхний свет
Celestron 44320
от 4 490 р.
биологический, оптико-цифровой, 3 объектива, увеличение 40 – 2000 x, камера, верхний свет, 0.62 кг
Celestron Laboratory 400
от 2 990 р.
биологический, оптический, 3 объектива, увеличение 40 – 400 x, 2.56 кг
Возможно, вас заинтересует

Микроскопы: характеристики, типы, виды

Тип

Биологический. Микроскопы, изначально рассчитанные на использование преимущественно в биологии и медицине — для изучения клеток, микроорганизмов и других подобных объектов. Одним из основных отличий данного типа микроскопов от стереоскопических является то, что в объективе используется только одна линза, и изображение получается плоским (притом что окуляр при этом может быть и одинарным, и сдвоенным, подробнее см. «Окуляр»). Таким образом, оценить объём предметов при взгляде через такой прибор невозможно. С другой стороны, биологические микроскопы могут обеспечивать довольно высокую кратность увеличения — до 2000х; а в тех сферах, где они применяются, объёмность и не требуется.

Стереоскопический. Микроскопы, имеющие объектив с парой линз и сдвоенный окуляр. Такая конструкция позволяет смотреть в окуляр обоими глазами и видеть при этом достоверное объёмное изображение. Микроскопы этого типа предназначаются в первую очередь для ремонта и сборки часов и других мелких механизмов, создания миниатюр, пайки микросхем, криминалистических исследований и т. п. Они дают сравнительно невысокое увеличение (до 200х, а иногда всего в несколько десятков крат), однако объёмность изображения позволяет точно орудовать инструментами в поле зрения. Кроме того, удобству работы способствуют большие рабочие расстояния.

Принцип работы

Оптический. Традиционные микроскопы, работа которых основана на использовании линз и других оптических элементов. Позволяют обеспечить высокое качество изображения и хорошую кратность увеличения, при этом не зависят от электричества (разве что для системы подсветки могут понадобиться батарейки). В микроскопах этого типа используются традиционные окуляры, однако есть отдельные модели, допускающие подключение внешней камеры и вывод изображения на дисплей компьютера. Также отметим, что это единственный принцип, применяемый в стереоскопических моделях (см. «Тип»)

Цифровой. Микроскопы этого типа фактически представляют собой цифровые камеры, дополненные мощной увеличивающей оптикой. Изображение с такой камеры нужно выводить на экран; некоторые модели оснащены собственными дисплеями, другие экранов не имеют, и их нужно подключать к компьютеру/ноутбуку. Преимуществом первой разновидности является независимость от внешнего оборудования, достоинства второго варианта — компактность и сравнительно невысокая стоимость. В то же время стоит отметить, что по степени увеличения большинство цифровых микроскопов уступает оптическим, а для стереоскопического изображения этот принцип не подходит.

Оптико-цифровой. Микроскопы, сочетающие в себе особенности оптических и цифровых моделей (см. соответствующие пункты). От «чисто цифровых» приборов та...кие модели отличаются более продвинутой оптикой, с револьверной головкой и высокой кратностью увеличения; от оптических — встроенной камерой и использованием экрана в роли окуляра (традиционные окуляры в оптико-цифровых моделях не применяются).

Кратность увеличения

Диапазон кратностей увеличения, обеспечиваемый прибором — от минимальной до максимальной.

Кратность микроскопа высчитывается по формуле «кратность окуляра умножить на кратность объектива». Например, 20х объектив с 10х окуляром дадут кратность 10*20 = 200х. Современные микроскопы могут оснащаться револьверными головками на несколько объективов, зум-объективами (см. ниже) и сменными окулярами — так что в большинстве моделей кратность можно регулировать. Это позволяет подстраивать устройство под разные ситуации: когда нужно рассмотреть мелкие детали, используется высокая степень увеличения, а вот для расширения поля зрения кратность нужно уменьшать.

Подробные рекомендации по оптимальным кратностям для разных задач можно найти в специальных источниках. Здесь же отметим, что многие производители идут на хитрость и указывают максимальное значение кратности по степени увеличения, достигаемой с дополнительной линзой Барлоу. Такая линза действительно может дать серьёзный прирост кратности, однако не факт, что изображение при этом получится качественным; подробнее см. «Комплектация».

Портативный

В данную категорию включены микроскопы небольшого размера, изначально рассчитанные на возможность постоянной переноски с собой и применение «в поле», вне лабораторий. Некоторые из таких устройств по габаритам и весу сравнимы с карманными фонариками. Кратность у портативных микроскопов невелика — до 100 – 200х, в некоторых моделях до 500х; однако высокая степень увеличения при упомянутом применении и не требуется. Подобные приборы ценятся ювелирами, экспертами-криминалистами и другими специалистами, которым часто приходится проводить исследования в полевых условиях.

Объектив

Зум-объектив. Объектив с переменной кратностью увеличения. Такая оптика позволяет плавно изменять общую кратность микроскопа в определённых пределах, не меняя объектива/окуляра и даже не отрываясь от наблюдений. С другой стороны, зум-объективы сложнее и дороже оптики с постоянной кратностью. Поэтому применяются они в основном в стереоскопических микроскопах (см. «Тип»): при ремонте, сборке и других задачах, для которых применяются такие приборы, возможность плавной подстройки кратности бывает крайне полезной.

— Кратность увеличения. Кратность увеличения, обеспечиваемая объективом. Этот параметр, наряду с кратностью окуляра, влияет на общую кратность увеличения прибора (см. выше). Большинство биологических микроскопов (см. «Тип») оснащаются несколькими объективами разной кратности на револьверной головке; это позволяет подстраивать степень увеличения по желанию пользователя. Стандартные варианты кратности таких объективов — 4х, 10х, 40х, 100х.

— Ахромат. Одна из разновидностей цветовой коррекции, применяемой в объективах. Необходимость цветовой коррекции обусловлена тем, что свет разных цветов по-разному преломляется линзами, и без дополнительных мер изображение в микроскопе расплывалось бы радужными разводами. Ахроматика — одна из простейших разновидностей цветовой коррекции, в такой оптике скорректированы цветовые искажения по жёлтому и зелёному цвету. Объективы-ахроматы отличаются простотой ко...нструкции и невысокой стоимостью. Правда, качество изображения в них далеко от идеала: чёткое изображение такой объектив даёт только в центре картинки, ширина зоны резкости составляет около трети от общей ширины поля зрения, а по краям изображения могут появляться красно-синие разводы. Впрочем, этого вполне достаточно для общего ознакомления, начального обучения, а нередко — и для более серьёзных задач.

— Планахромат. Улучшенная и доработанная разновидность ахроматических объективов (см. выше). В планахроматах предусматривается дополнительная коррекция кривизны поля, благодаря чему область чётко видимого изображения в таких объективах составляет не менее 2/3 от общей ширины поля зрения, а нередко — и более. Именно такие объективы рекомендуются для серьёзной учёбы и профессионального применения.

— Посадочный диаметр. Размер резьбы, используемой для установки объектива. Больший посадочный диаметр, как правило, означает большую ширину объектива, а значит — более высокую светосилу и лучшее качество изображения. С другой стороны, крупный размер сказывается на габаритах, весе и стоимости оптики. В современных микроскопах в основном встречаются диаметры от 20 до 35 мм. Зная размер резьбы, можно приобретать сменные или запасные объективы для устройства.

Окуляр

Монокуляр. Окуляр с одной линзой, в который можно смотреть только одним глазом. По очевидным причинам используется только в биологических микроскопах (см. «Тип»). Преимуществами монокуляров являются прежде всего меньшие размеры и стоимость, чем у других разновидностей; кроме того, они не требуют подстройки по межзрачковому расстоянию. С другой стороны, постоянно смотреть в окуляр одним глазом утомительно, поэтому данный вариант слабо подходит для ситуаций, когда в микроскоп приходится заглядывать часто и подолгу.

Бинокуляр. Сдвоенный окуляр, в который можно смотреть сразу обоими глазами. Отметим, что такая оптика применяется не только в стереомикроскопах, изначально предназначенных для рассматривания предмета через два объектива (см. «Тип»), но и в биологических микроскопах с одним объективом. Дело в том, что смотреть в оптический прибор двумя глазами значительно удобнее, чем одним, глаза при этом меньше нагружаются и усталость наступает не так быстро. Поэтому для серьёзных задач, связанных с частым использованием микроскопа, оптимальным вариантом являются бинокуляры (или тринокуляры, см. ниже). Обходится такая оптика дороже монокулярной, однако это компенсируется удобством использования.

Тринокуляр. Разновидность бинокуляра (см. соответствующий пункт), дополненная третьим оптическим каналом для специальной камеры-видеоокуля...ра. Такая камера, как правило, подключается к ПК или ноутбуку; установив её в гнездо для третьего окуляра, можно осуществлять фото- и видеосъёмку, а также выводить изображение в реальном времени на экран компьютера. Одновременно с этим можно смотреть в микроскоп и обычным способом. Устройства с тринокулярами весьма функциональны и универсальны, однако сложны и стоят недёшево.

— LCD-экран. Наличие у микроскопа LCD-экрана, заменяющего традиционный окуляр. К такому прибору не нужно всякий раз наклоняться для просмотра изображения, что бывает очень удобно, если наблюдения нужно совмещать с ведением записей и другими подобными занятиями. Микроскопы подобной конструкции обычно имеют функцию фото- и видеосъёмки, а также различные встроенные инструменты — например, масштабную сетку для оценки размеров видимых объектов, выводящуюся прямо на экран. Кроме того, изображение на экране может видеть не только непосредственный пользователь, но и все, кто находится рядом; такие возможности бывают незаменимы во время учебных занятий, консультаций, презентаций и т. п. С другой стороны, подобные микроскопы получаются громоздкими и дорогими.

— Кратность увеличения. Кратность увеличения, обеспечиваемая окуляром. Этот параметр, наряду с кратностью объектива, влияет на общую кратность увеличения прибора (см. выше). Классическим вариантом для окуляров в микроскопах считается 10х, однако встречаются и более высокие значения. В комплект поставки может входить несколько окуляров, разной кратности — для изменения общей степени увеличения. Встречается обозначение кратности с буквенным индексом, например, WF10x. Это означает, что окуляр имеет расширенное поле зрения (WF — широкое, EWF — экстра-широкое, UWF — сверхширокое).

— Наклон окуляра. От наклона окуляра зависит положение головы наблюдателя при взгляде в микроскоп и общее удобство использования. По данному показателю можно выделить три основных варианта: фиксированный угол, регулируемый угол, без наклона. Фиксированный угол чаще всего составляет 30° или 45° относительно горизонтали, именно эти значения считаются наиболее удобными. В микроскопах с регулируемым углом весь штатив, с тубусом и предметным столиком, закреплён на основании при помощи поворотного крепления. Это наиболее удобный вариант, позволяющий подстраивать наклон под свои предпочтения, однако крепление со временем склонно разбалтываться, поэтому в профессиональных микроскопах оно применяется редко. Третья разновидность — вертикальные микроскопы, без наклона — особого распространения не получили: такая конструкция используется в некоторых стереоскопических моделях (см. «Тип») для того, чтобы предметный столик оставался строго горизонтальным (это важно при некоторых работах с микроскопическими объектами).

— Посадочный диаметр. Номинальный диаметр окуляра, используемого в микроскопе, а также диаметр отверстия в тубусе, предназначенного для установки окуляра. В современных микроскопах используется несколько стандартных диаметров, в частности, 23 и 27 мм. На практике данный параметр необходим прежде всего в том случае, если планируется приобретать запасные или сменные окуляры к микроскопу, либо если «в хозяйстве» уже имеется окуляр, и нужно оценить его совместимость с данной моделью.

— Диоптрическая коррекция. Диапазон диоптрической коррекции, предусмотренный в окуляре. Такая коррекция применяется для того, чтобы близорукий или дальнозоркий человек мог смотреть в микроскоп без очков или контактных линз. В большинстве моделей с данной функцией диапазон коррекции составляет порядка 5 диоптрий в обе стороны; это позволяет использовать микроскоп при невысокой и средней степени близорукости/дальнозоркости.

Максимальное рабочее расстояние

Наибольшее рабочее расстояние, обеспечиваемое микроскопом.

Рабочим расстоянием называют расстояние от объектива до рассматриваемого предмета. Этот параметр важен в первую очередь для стереомикроскопов (см. «Тип»): чем больше пространства остаётся под объективом, тем удобнее работать с различными инструментами и приспособлениями в поле зрения прибора. Однако тут стоит учитывать, что максимальное рабочее расстояние достигается на минимальной кратности увеличения, с ростом кратности объектив приходится приближать к рассматриваемому предмету. Для биологических же микроскопов рабочее расстояние не имеет особого значения: такие приборы работают в основном с плоскими препаратами, к которым объектив можно подводить практически вплотную.

Револьверная головка

Количество объективов в револьверной головке микроскопа.

Револьверная головка представляет собой круглую насадку с несколькими объективами разной кратности. Поворачивая такую насадку, можно менять используемый в данный момент объектив; а чем больше объективов — тем шире у пользователя выбор при подборе оптимальной кратности микроскопа. С другой стороны, большое количество оптики сказывается на габаритах и цене устройства. В свете этого большинство современных микроскопов имеют 34 объектива — это количество считается оптимальным по соотношению функционала и цены.

Предметный столик

Конструкция предметного столика, предусмотренного в микроскопе.

— Стационарный. Предметный столик, закреплённый неподвижно; наведение на резкость в таких микроскопах осуществляется за счёт движения вверх-вниз тубуса с объективом и окуляром. Такие системы просты и недороги, однако наводить резкость, глядя в постоянно движущийся окуляр, не очень удобно. Кроме того, для продвинутых биологических микроскопов (см. «Тип») с бинокулярами и тринокулярами (см. «Окуляр») данный вариант слабо подходит ещё и по некоторым конструктивным причинам. А вот абсолютное большинство стереомикроскопов оснащается именно стационарными столиками — это наиболее разумная конструкция с учётом специфики применения.

Подвижный. В микроскопах этого типа вся оптическая система неподвижно закреплена на штативе, а предметный столик может перемещаться вверх-вниз для наведения оптики на резкость. Такая конструкция встречается исключительно в биологических микроскопах (см. «Тип»). Она несколько сложнее и дороже, чем при неподвижном столике, но в то же время значительно удобнее: при наведении на резкость окуляр не двигается, что позволяет с комфортом подстраивать изображение, не отрываясь от наблюдения. Кроме того, именно подвижный столик является наиболее подходящим для продвинутых приборов с бинокулярами и тринокулярами (см. «Окуляр»), практически все подобные микроскопы имеют подобное оснащение.

Препаратоводитель

Наличие препаратоводителя в конструкции предметного столика.

Препаратоводитель представляет собой приспособление для плавного перемещения препаратных стёкол под объективом микроскопа, а также фиксации условных координат отдельных участков препарата. За перемещение отвечают механизмы, позволяющие сдвигать стекло отдельно в продольном и поперечном направлении. Фиксацию координат обеспечивают специальные шкалы с нониусами, точность определения координат может составлять от 0,1 до 0,01 мм.

Данная функция встречается исключительно в биологических микроскопах (см. «Тип»). Её наличие может быть крайне важным для исследований, связанных с высокими кратностями увеличения. Без препаратоводителя стекло пришлось бы перемещать вручную, а поиск определённых участков был бы весьма непростой, а то и невозможной задачей.

Фокусировка

Виды фокусировки (наведения на резкость), предусмотренные в микроскопе. Фокусировка осуществляется за счёт изменения расстояния между рассматриваемым предметом и объективом; виды её могут быть такими:

— Грубая. Данный способ означает наличие одного поворотного регулятора, отвечающего за перемещение объектива или предметного столика. Достоинства подобной конструкции — простота и невысокая стоимость. В то же время фокусировка на высоких кратностях в таких микроскопах является довольно непростой задачей: поворачивать ручку настройки приходится буквально по долям миллиметра.

Грубая / точная. Фокусировка, осуществляемая двумя механическими регуляторами — для предварительного наведения на резкость и для окончательной тонкой подстройки. Такая настройка сама по себе удобнее, чем только грубая (см. выше), а на высоких кратностях она бывает просто незаменимой. С другой стороны, наличие дополнительного регулятора усложняет и удорожает конструкцию, поэтому встречается данный вариант преимущественно в полупрофессиональных и профессиональных микроскопах.

— Ручная. Способ, предполагающий отсутствие механизма фокусировки как такового. Наведение на резкость в таких приборах осуществляется за счёт того, что пользователь вручную перемещает объектив — например, сдвигая его вверх-вниз на вертикальном штативе и фиксируя в нужном положении зажимом, или наклоняя вперёд-назад на поворотном креплении. Данный вариант подходит только д...ля моделей с невысокой кратностью, не требующих особой точности при фокусировке; он встречается преимущественно в цифровых микроскопах без собственного экрана (см. «Принцип работы»), а также портативных моделях (см. соответствующий пункт).

Блокировка фокусировки

Возможность заблокировать механизм фокусировки микроскопа. Один из вариантов применения данной функции — работа с большим количеством однотипных препаратов: заблокировав наведённый на резкость микроскоп, можно менять препараты, не тратя времени на фокусировку при каждой смене. Кроме того, блокировка не помешает при работе на очень высоких кратностях (от 1000х и выше). Фокус на таких увеличениях нужно наводить очень точно, а рабочее расстояние получается небольшим — в итоге, случайно задев ручку грубой фокусировки, можно основательно сбить настройки или даже «въехать» объективом в препарат. Блокировка позволяет избежать подобных неприятностей.

Подсветка

Тип подсветки предметного столика, используемой в микроскопе.

— Светодиодная (LED). Наиболее продвинутая на сегодняшний день разновидность подсветки. Светодиоды дают яркий свет белого цвета с холодной окраской, оптимальный для работы с прозрачными образцами. Такие источники света можно оснащать регуляторами яркости. Кроме того, LED-подсветка чрезвычайно экономична в плане потребления энергии и практически не вырабатывает излишнего тепла. Всё это делает данный вариант подходящим даже для наиболее продвинутых микроскопов.

— Галогенная. До появления светодиодов подобная подсветка была основным вариантом, применявшимся в биологических микроскопах (см. «Тип») среднего и профессионального уровней. Галогенные лампы обеспечивают мощный поток света, при этом яркость подсветки, как правило, можно регулировать; спектр свечения получается достаточно удобным для наблюдений, а нагрев относительно невелик (хотя и больше, чем в светодиодах). По экономичности энергопотребления такое освещение уступает светодиодному, однако превосходит лампы накаливания.

— Лампа накаливания. Наиболее простая и недорогая разновидность подсветки. Собственно, именно невысокая стоимость является основным преимуществом подобных систем. А вот недостатков у ламп накаливания немало. Во-первых, они дают тёплый оттенок свечения, искажающий цветопередачу; для несложных задач это не критично, но вот в серьёзных исследованиях недопустимо. Во-вторых, лампа сильно нагревается, что...может отрицательно повлиять на препарат. В-третьих, такое освещение потребляет довольно много энергии. Как следствие, лампы накаливания встречаются исключительно в недорогих микроскопах начального уровня, и даже среди них они постепенно выходят из употребления.

— Зеркальная. Освещение при помощи зеркала, отражающего свет от окна, потолочной лампы или другого внешнего источника освещения. Из достоинств этого варианта можно назвать простоту, невысокую стоимость, компактность и полную независимость от источников энергии. С другой стороны, подобный микроскоп зависит от внешнего освещения, а настройка зеркала требует определённых навыков и с непривычки может оказаться довольно непростым делом. Поэтому в чистом виде зеркальные системы используются сравнительно редко, однако зеркало может предусматриваться как дополнение к другому источнику освещения, например, галогенной лампе.

Верхняя подсветка

Наличие в микроскопе подсветки, направленной сверху вниз. В биологических микроскопах (см. «Тип») такая подсветка даёт возможность рассматривать непрозрачные объекты; также в некоторых случаях она может применяться как дополнение к основному нижнему освещению. А в стереоскопических моделях применяется только верхний свет — это обусловлено спецификой применения.

Конденсор

Особенности конструкции конденсора, установленного в микроскопе.

Конденсор является частью системы подсветки в биологических микроскопах (см. «Тип»). Это оптическая система, особым образом обрабатывающая поступающий на препаратное стекло поток света. Для разных ситуаций могут потребоваться разные способы такой обработки; соответственно, в микроскопах могут применяться разные виды конденсоров. Тем не менее, самым популярным в наше время является простейший конденсор Аббе. Он обеспечивает концентрацию пучка света и равномерное его распределение по полю зрения. Изначально такое приспособление предназначено для исследований методом светлого поля, однако может применяться и для фазоконтрастных наблюдений. Конденсор Аббе мможет оснащаться ирисовой апертурной диафрагмой — с её помощью можно снизить яркость освещения — а также цветными светофильтрами.

Другие, более специфические виды конденсоров (например, фазовый или тёмного поля) обычно приобретаются по отдельности и в стандартное оснащение микроскопа включаются редко.

В характеристиках конденсора может указываться N.A. — размер апертуры (действующего отверстия) в миллиметрах, например, N.A.=1,2. Это довольно специфический параметр; достаточно сказать, что он подбирается производителем под комплектные объективы и на выбор микроскопа принципиально не влияет.

Встроенная камера

Наличие в микроскопе собственной встроенной камеры, позволяющей осуществлять фото- и видеосъёмку объектов в поле зрения, а также выводить изображение на внешний экран (или собственный, при его наличии). Конкретные особенности применения данной функции могут быть разными, в зависимости от особенностей конструкции. Так, некоторые микроскопы (в основном портативные, см. соответствующий пункт) работают только с внешними экранами, другие имеют собственные дисплеи, третьи могут работать и с собственным, и с внешним экраном. Аналогично могут различаться особенности записи фото/видео; подробнее см. соответствующий пункт.

Функции и возможности

Регулировка межзрачкового расстояния. Возможность изменять расстояние между окулярами в бинокулярном или тринокулярном микроскопе (см. «Окуляр»). Для нормальной видимости необходимо, чтобы расстояние между линзами окуляров соответствовало расстоянию между зрачками пользователя. У разных людей это расстояние различается, соответственно, для комфортного использования может потребоваться данная настройка.

Регулировка яркости. Возможность изменять яркость подсветки — для подстройки освещения под особенности ситуации. К примеру, для исследования тонкого прозрачного препарата в светлом поле высокая яркость будет излишней, а вот при просвечивании плотного тёмного объекта без неё не обойтись.

Освещение по Келлеру. Наличие в микроскопе освещения по системе Келлера. Такое освещение применяется исключительно в биологических моделях (см. «Тип») , оно является признаком прибора профессионального уровня. Система Келлера усложняет и удорожает конструкцию, кроме того, для неё может потребоваться специфическая настройка, однако при правильной настройке качество освещения получается очень высоким, а изображение — максимально достоверным. Отметим, что в микроскопах встречается т. н. «упрощённая система Келлера», когда настройки выставляются на заводе и не поддаются изменению; однако в данном случае имеется в виду именно полноценное..., регулируемое освещение по Келлеру.

Запись фото / видео. Возможность фото- и видеосъёмки изображения, видимого в микроскоп. Особенности реализации данной функции в разных микроскопах могут быть разными. К примеру, одни модели нужно подключать к компьютеру, другие могут записывать материалы напрямую на карту памяти или другой носитель. Также сами камеры, осуществляющие съёмку, могут быть как встроенными, так и съёмными (см. «Комплектация»/соответствующие пункты).

Питание

Способы питания, предусмотренные в микроскопе. Даже оптическим моделям может потребоваться источник энергии для работы подсветки (см. выше), а для других разновидностей питание является практически обязательным. Некоторые модели могут поддерживать несколько типов питания.

— Сеть 220 В. Подключение к обычной розетке на 220 В. Достаточно удобный и практичный вариант, слабо подходящий разве что для портативных моделей (см. выше).

— USB порт. Питание от разъёма USB часто встречается в цифровых микроскопах (см. «Принцип работы»): устройство запитывается от того же разъёма, через который подключается к компьютеру или другому внешнему экрану. А в оптических моделях подобное питание может предусматриваться в дополнение к вышеописанной сети 220 В . Отметим, что USB-порты, помимо прочего, встречаются также в ноутбуках и других портативных устройствах, что позволяет применять такие микроскопы даже при отсутствии розеток поблизости. Это особенно удобно в случае портативных приборов (см. выше).

— Аккумулятор. Питание от собственного встроенного аккумулятора, в некоторых случаях — несъёмного. Данный вариант делает микроскоп полностью автономным и позволяет применять его даже при полном отсутствии поблизости внешних источников питания. С другой стороны, этот момент актуален в основном для портативных моделей, и то лишь в отдельных случаях, а встроенная батарея заметно сказывается на весе, габаритах и цене устройства. Поэтому чисто аккумуляторные...микроскопы встречаются крайне редко, чаще такой способ питания предусматривается в дополнение к сети 220 В или USB (см. выше) — как запасной на случай проблем с внешним питанием.

— Батарейки. Ещё одна разновидность автономного питания, наряду с описанными выше аккумуляторами. Наличие батарейного отсека обходится дешевле встроенного аккумулятора, однако сами батарейки приходится приобретать отдельно — причём либо регулярно покупать одноразовые элементы, либо выложить довольно крупную сумму за аккумуляторы и зарядное устройство к ним. Кроме того, качество батареек сильно зависит от конкретной марки, и далеко не всякие элементы могут нормально «завести» микроскоп и обеспечить приемлемое время автономной работы. Поэтому такое питание, как и аккумуляторное, в чистом виде встречается редко, чаще оно дополняет подключение к сети 220 В или USB.

Комплектация

Дополнительное оснащение, входящее в комплект поставки микроскопа.

— Камера. В данном случае подразумевается съёмная камера, устанавливамая либо на основной оптический канал (для использования внешнего экрана в роли окуляра), либо на третий дополнительный канал тринокуляра (см. «Окуляр»). Помимо этого, встречаются также встроенные камеры (см. соответствующий пункт). Некоторые модели, поставляемые без камеры, позволяют докупить её отдельно, но данный вариант комплектации в целом всё же более удобен.

— Адаптер для смартфона. Приспособление, позволяющее устанавливать на микроскоп смартфон таким образом, чтобы камера аппарата «видела» изображение в окуляре. Таким образом можно проводить фото- и видеосъёмку на смартфон, а также использовать его экран в качестве окуляра — например, если изображение хочется показать сразу нескольким людям.

— Набор аксессуаров и препаратов. Набор дополнительных принадлежностей для работы с микроскопом. В такой набор обычно входят как минимум препаратные и покрывные стёкла; помимо них, в комплекте могут поставляться инструменты для препарирования, различные вспомогательные составы (смола для приклеивания, масла и жидкости для иммерсионных объективов), а также готовые препараты для проверки возможностей микроскопа и первоначального обучения работе с ним.

Линза Барлоу. Дополнительная линза, которая устанавливается пер...ед окуляром и изменяет общую кратность увеличения — как правило, в сторону повышения, но возможно и наоборот. Чтобы вычислить общую степень увеличения при применении такой оптики, нужно изначальную кратность прибора умножить на кратность линзы: к примеру, 200х микроскоп с 1,6х линзой Барлоу даст 200*1,6 = 320х увеличение. Отчасти именно поэтому линзы Барлоу имеют очень невысокую кратность — даже она даёт значительный прирост увеличения. Вторая причина заключается в том, что повышать общую степень увеличения имеет смысл только до определённого предела — сверх этого предела оптика будет лишь растягивать изображение, не повышая детализацию. Собственно, во многих микроскопах именно это и происходит, если настроить прибор на максимальную кратность и установить линзу Барлоу. Так что данное приспособление стоит рассматривать скорее как инструмент для настройки увеличения на средних кратностях, а не как способ повышения максимальной кратности.

— Чехол/кейс. Футляр для хранения и транспортировки микроскопа. Чехлами называют мягкие футляры, они предназначены в основном для защиты от загрязнений; кейсы делаются из твёрдых материалов, они более громоздки, зато способны защитить прибор ещё и от ударов и сотрясений..
Подбор по параметрам
 
Цена
отдо р.
Производители
Тип
Принцип работы
Макс. кратность увеличения
Функции/возможности
Окуляр
Расширенный подбор
Каталог микроскопов 2018 - новинки, хиты продаж, купить микроскопы.